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ABSTRACT 

We give an  e lementa ry  proof  t h a t  the  second coordinate  ( the scenery 

process) of  the  T, T - l - p r o c e s s  associa ted to any  m e a n  zero i.i.d, r a n d o m  

walk on Z d is not  a f ini tary factor of  an  i.i.d, process.  In par t icular ,  th is  

yields an  e lementa ry  proof  tha t  the  basic T, T - 1 - p r o c e s s  is not  finitarily 

isomorphic  to a Bernoull i  shift  ( the s t ronger  fact t ha t  it is no t  Bernoulli  

was proved by Kalikow). This  also provides (using pas t  work of den  

Hollander and  the  au thor )  an  e lementa ry  example ,  name ly  the  T, T -1 -  

process in 5 d imensions ,  of  a process which is weak Bernoulli  bu t  not  

a f ini tary factor of  a n  i.i.d, process.  A n  example  of such  a process was 

given earlier by del Junco  and  Rahe.  T h e  above holds t rue  for a rb i t ra ry  

s t a t ionary  recurrent  r a n d o m  walks as well. On  the  o ther  hand ,  if t he  

r a n d o m  walk is Bernoulli  and  t rans ient ,  the  T, T - l - p r o c e s s  associa ted to 

it is also Bernoulli .  Finally, we show t h a t  f ini tary factors of  i.i.d, pro- 

cesses wi th  finite expected  coding vo lume sat isfy cer ta in  not ions  of weak 

Bernoulli  in higher  d imens ions  which have been previously in t roduced 

and  s tud ied  in the  l i terature.  In par t icular ,  th is  yields (using pas t  work 

of vail den  Berg a n d  the  au thor )  the  fact  t ha t  the  Ising model  is weak 

Bernoull i  t h r o u g h o u t  the  subcri t ical  regime. 

1. I n t r o d u c t i o n  

S. Kalikow [13] proved that the T, T-t-process associated to simple symmetric 

random walk in 1 dimension (to be defined below) is not a Bernoulli shift, solving 

a problem that had been open for over 10 years. A relatively extensive study of 
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the T, T-l-processes associated to arbitrary (i.i.d.) random walks on Z d was con- 

ducted in [11], investigating how the properties of Bernoulli and weak Bernoulli 

are reflected in the behavior of the underlying random walk. 

We first give the definition of the general T, T-l-process. We will be slightly 

terse; the reader may refer to [11] for full details. For a fixed integer d _> 1, 

let {Xi}iEz be a stationary process taking values in Z d. Let {Sn}nez be the 
corresponding r a n d o m  walk on Z d defined by 

n 0 

So=O, s n = Z x i  (n> 1), S n = -  ~ Xi ( n < - l ) .  
i = 1  i = n + l  

Next, let {C~)zezd be i.i.d, random variables taking values 1 and 0 each with 

probability 1/2. 

Now consider the process 

{Zi)icz where Z~ = (Xi,C&), 

which we call the T, T - l - p r o c e s s  assoc ia ted  w i t h  {Xi}iez. It is easy to see 

that  {Zi}~ez is a stationary process; it is essentially a so-called skew-product. 

Note, importantly, that  even if the random walk is living in Z d, the T, T-l-process 

is always a process indexed by Z. 

Both in [13] and in [11], only the case where {X~}iez is an i.i.d, process was 

considered, while in this paper we do not always make this assumption. We 

assume that the reader is familiar with the notions of (a) Bernoulli shifts, (b) 
weak Bernoulli, (c) factor maps and (d) finitary factor maps (see e.g., [2] and 

[11] which together contain all of these definitions). By a finite-valued process, 
we mean a process which takes on only a finite number of values. 

Our first result is the following. 

THEOREM 1.1: Let {Xi}iEz be an i.i.d, process taking values in Z d and having 
mean O. Then there is no finitary factor map from an (not necessarily finite- 
valued) i.i.d, process to { C& }iez, (i.e., to the second coordinate of the T, T -1- 

process associated with { Xi } iez ). 

Remarks: (a) In particular, this yields the fact that the basic T,T-l-process 

(i.e., the one associated to simple symmetric random walk in 1 dimension) is not 

finitarily isomorphic to a Bernoulli shift, a weakening of Kalikow's theorem but 

one which is much more easily proved. 
(b) One of the main results in [11] implies, as a special case, that the T, T -1- 

process associated to simple symmetric random walk in d > 5 dimensions is weak 
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Bernoulli. In view of Theorem 1.1, this yields an elementary example of a process 

which is weak Bernoulli but not a finitary factor of an i.i.d, process. The first 

example of such a process was given in [12] where a type of iterative construction 

is used. 

(c) In order to continue the flow, we will give at the end of this introduction 

further comments concerning the above result. 

Our second result is the following. 

THEOREM 1.2: Let  {Xi}icz be a stationary ergodic process taking values in Z d 

and assume that {Sn}nez is recurrent; i.e., P ( S ~  = 0 for some n > O) -- 1. Then  

there is no finitary factor map  from an (not necessarily finite-valued) i.i.d, process 

to {cs } cz. 

Remark:  It is known (see [7], p. 347) that all mean 0 stationary ergodic processes 

taking values in Z are recurrent and so Theorem 1.2 is applicable in such cases. 

However, in Z 2, there exist stationary, ergodic, mean 0 random walks whose step 

distribution is finite but which are not recurrent (see [5]). 

Theorems 1.1 and 1.2 will be proved in Section 2. 

We mention another result which, while related to the above results in this 

paper, is a slight tangent. In [11], it was shown that  the T, T-Lprocess  associated 

to any transient i.i.d, random walk is Bernoulli. The following is an extension of 

this. 

THEOREM 1.3: Let  {X i } iEz  be a stationary process taking values in Z d which 

is a Bernoulli shift and assume that {Sn},~Ez is transient; i.e., P ( S n  = 0 for some 

n > O) < 1. Then  the T, T - L p r o c e s s  associated to it is a Bernoulli shift. 

The proof given in [11] for the i.i.d, case (which verifies the so-called very weak 

Bernoulli condition) does not work here quite as nicely and we instead easily 

prove this by explicitly constructing a factor map from a Bernoulli shift to our 

process. In fact, in Section 3, we will construct a general class of processes, which 

includes all of the T, T-Lprocesses  as well as certain random fields indexed by 

Z d, and we will obtain a general result which yields Theorem 1.3 as a special 

case. 

The second part of this paper deals with the relationship between finitary 

codings and weak Bernoulli in higher dimensions. We first need the following 

definition. Given a finitary mapping from a process {Xi}iez to a process {Yi}iez, 

we let Tj be defined (as usual) as the smallest integer such that  the interval 

around j of radius Tj in the process {Xi}iez determines Yj. If E[T0] < oc, 
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we say that  the finitary mapping has f in i te  e x p e c t e d  c o d i n g  l eng th .  As 

explained in [12], it is elementary to show that  if {Y~}iez is a finitary factor of an 

i.i.d, process with finite expected coding length, then {Y/}iez is weak Bernoulli. 

(A proof of this is given in this reference as well.) We want to extend such a 

result to higher dimensions. Finitary codings in higher dimensions are defined 

analogously to 1 dimension (see again [2]) and the definition of T# is obtained 

by simply replacing the word interval by box. While it is not at first clear what 

should replace the condition E[T0] < oo, after some reflection, it is not hard 

to convince oneself that  the correct replacement of this for Z d is E[T d] < oc. 

However, what is much more subtle is how one generalizes the definition of weak 

Bernoulli to higher dimensions. It  turns out that the first definitions one usually 

comes up with are inappropriate for various reasons; this is discussed at length 

in [4]. Given in this reference are the definitions of quite weak Bernoulli (QWB) 

and quite weak Bernoulli with exponential rate (QWBE) (which were originally 

introduced and studied in [3]) as well as a proposal for the correct definition of 

weak Bernoulli (WB) in higher dimensions. In Section 4, we will review these 

definitions and prove the following three results. 

THEOREM 1.4: Let {Yi}~ez~ be a finitary factor of the (not necessarily finite- 
valued) i.i.d, process {Xi}i~z d. IrE[To d] < oo, then {Y/}iczd is QWB. 

THEOREM 1.5: Let {Y/}iez~ be a finitary factor of  the (not necessarily finite- 
valued) i.i.d, process {Xi}iezd. I f  E[e ~T°] < cx~ for some 6 > O, then {Y~}iezu is 
QWBE. 

THEOREM 1.6: Let {Y/}iezd be a finitary factor of the (not necessarily finite- 
valued) i.i.d, process {Xi)~ezd. IrE[To d] < oo, then {Y~}iez" is WB. 

Theorems 1.4, 1.5 and 1.6 will be proved in Section 4, and an application to 

the subcritical Ising model will also be given. 

We make some final comments concerning Theorem 1.1. As mentioned in the 

first sentence of the paper, Kalikow proved that  the T, T-Lprocess  associated to 

simple symmetric random walk in 1 dimension is not a Bernoulli shift. Hence, 

since factors of Bernoulli shifts are Bernoulli shifts (see [15]), there cannot be a 

finitary factor map from an i.i.d, process onto it. One cannot, however, immedi- 

ately conclude that  there also cannot be a finitary factor from an i.i.d, process 

onto {Cs, }iez since it is not clear that the latter is not a Bernoulli shift. The 

fact that {Zi}iez  is not a Bernoulli shift and that  the first coordinate is an i.i.d. 

process leads one to think that the second coordinate itself should then also not 
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be a Bernoulli shift, but the main result in [16] implies precisely that such rea- 

soning is not correct. However, C. Hoffman [10] has in fact shown that {Cs,  }iez 

is not a Bernoulli shift. Hence Theorem 1.1 for simple symmetric random walk 

in 1 dimension does in fact follow from known results. Of course, Theorem 1.1 

is most interesting in higher dimensions where the T, T-1-process is Bernoulli or 

even weak Bernoulli. 

2. P r o o f s  o f  T h e o r e m s  1.1 a n d  1.2 

In this section, we give simple proofs of Theorems 1.1 and 1.2. The first lemma 

which we need follows from the results in [14]. This is also explicitly discussed 

in [2], where it is stated that  the result extends to higher dimensions and is used 

there to show that  certain Markov random fields which are Bernoulli are not a 

finitary factor of an i.i.d, process. However, as we only need the result for 1 

dimension, we state it only for that  case. In words, it says that  finitary factors 

of i.i.d, processes satisfy standard large deviation behavior. 

LEMMA 2.1: Let  {Y/}i~z be a real valued process taking on a finite number  o f  

values which is a finitary factor o f  an (not necessarily finite-valued) i.i.d, process 

{Xi)ie z. Then,  for every e > O, there exist posit ive constants ce and ~/~ such 

that  for all n ~_ 1 

,~-1 E[Y0] ) 
i=0 

The next lemma is a key ingredient. 

LEMMA 2.2: Let  {Xi}ic::z be an i.i.d, process taking values in Z d and having 

mean 0, {S~} defined as usual, and Rn := [{So, S1 , . . . ,  S~-1}1 be the cardinality 

o f  the range o f  the random walk up until t ime n - 1. Then  for every e > O, we 

have that  

holds for large n. 

Proof: If the distribution of the Xi's is compact (or even satisfies much weaker 

assumptions), then this result follows from Lemma 5.1 in [6] which is a much 

stronger statement. See also [9] for related results. To extend to the general 

mean 0 case, we use a truncation argument. We need the following lemma which 

is proved afterwards. 
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LEMMA 2.3: Consider a probability distribution # o n  Z d whose mean is O. Then 

given ~ > O, there exists a probability distribution u on Z d which has compact 

support, mean O, and such that 

(1) # = (1 - 6)v + 5 #  

for some probability distribution u ~ on Z d. 

Given the result for the case of compactly supported distributions together 

with Lemma 2.3, we proceed with the proof of Lemma 2.2 as follows. Let e > 0. 

Choose 5 > 0 such that  (1 - 5) >_ (1/2) ~/2. Denoting the distribution of Xi by 

#, we can, by Lemma 2.3, choose a probability distribution u having compact 

support,  mean 0 and satisfying (1) for some probability distribution # on Z d. 

Letting {R*} denote the range process for the random walk whose steps are 

distributed according to ~, we can (as u has compact support  and we already 

know the result in this case) find N such that  for all n > N,  

) p(R: _> 
\ n 

It  follows that  for all n _> N,  

p ( R n  <_e) > ( 1 -  (~)nP( R :  _< e) _> ( 1 )  ~n 
\ n n 

as desired. | 

Proof of Lemma 2.3: Fix a probability measure # o n  Z d with mean O. We 

assume that  # does not live on a hyperplane intersected with Z d for, in that  case, 

we could follow the argument on a lower dimensional lattice. Fix 5 > O. Given 

a map  p: Z d -+ [0, 1] with the property that  there is a y E Z d with p(y)#(y) > O, 

denote by #p the probability measure on Z d given by 

 P(x) = Ey zdp(y),(y)" 

Note that  i fp  - 1, then #p = #. Let :P denote the set o fp ' s  as above which take on 

the value 0 for all but finitely many x E Z d and such that  )-'~yczd P(Y)#(Y) = 1 -5 .  

Next, let ~4 denote {#p: p E :P). Clearly, any v E ~4 has compact support  and 

can be expressed as in (1) for some distribution u ~ on Z d. We now show that  

some u E ~4 has mean 0, or equivalently that  M '  := {E[#p]: p E P}  contains 

the 0 vector, which will complete the proof. I t  is clear that  P is a convex set and 

it is easy to check that  for all p,p' E "P, for all a E [0, 1], 

#ap+O-a)p '  = a#p + (1 - a)#p,.  
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(This last equality is not necessarily true if ~ y e z d  P(Y)#(Y) # ~-~yez~ P'(Y)#(Y)') 
Since expectation is linear, it follows that  ~4 t is a (not necessarily closed) con- 

vex set in R 4. If ;~41 does not contain 0, it would follow from the separating 

hyperplane theorem that  there exists a hyperplane H in R d such that  A~ t is on 

one side of (or on) H.  We show, however, that  A/t ~ contains points on both sides 

of H.  Calling the two sides $1 and $2, choose x C $2 such that  #(x) > 0 (the 

fact that  # does not live on a hyperplane and has mean 0 guarantees such an 

x). Let p be 1 - 8/2 on x and 1 elsewhere. Then E[#p] is in $1. Now, clearly 

we can choose R sufficiently large so that  if we modify p to be 0 for all points 

which are R or further away from the origin, we will obtain a (modified) p for 

which E[Itp] C S1, ttp has compact support  and ~-]yeZ~ P(Y)#(Y) -> 1 - 5. By 

multiplying this modified p by (1 - 5 ) / ~ y e Z a  P(Y)#(Y), we obtain a p E P with 

E[#p] C $1. By symmetry  of the argument, A~ ~ contains points on both sides of 

H,  a contradiction. | 

Proo[ of Theorem 1.1: Assume there exists a finitary coding from an i.i.d. 

process to {Csl }iez. Lemma 2.1 now implies that  there exists ~ > 0 so that  

n--1 

i=0 

for large n. Choose e > 0 so that  

If  the colors at all the points of {So, $ 1 , . . . ,  S , -1}  are 1, then certainly it follows 

that  

Zc ,- 
i=O 

It  follows that  

P Cs, - > > P(nn  < en_ 
- - - \ 2 /  ' 

which in turn is at least (½)2~,~ for large n by Lemma 2.2. Hence (½)2~, < e-~,, 

for large n, contradicting the definition of e and completing the proof. | 

Remark: If  we consider any symmetric d-dimensional random walk with or with- 

out a finite mean, the argument given above easily yields the fact that  the scenery 
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process for the associated T, T-l-process  is not a finitary coding of an i.i.d, pro- 

cess. In particular, if in 1 dimension we have a random walk where a step of size 

x has probability proportional to 1/Ixl ~ for x ¢ 0 with a E (1, 3/2), then (using 

[11]) the associated T, T-Lprocess  is weak Bernoulli, giving us another example 

of a process which is weak Bernoulli but not a finitary coding of an i.i.d, process. 

The next lemma can be found in [7], p. 346. 

LEMMA 2.4: Let (Xi}ie Z be a stationary ergodic process taking values 

in Z d, (Sn) defined as usual, and Rn := ](So, S1, . . .  ,Sn-1}[ as above. I f  

P(Sn = 0 for somen > O) = 1 0 . e . ,  if  (Sn}ncz is recurrent), then 

l im~_~  Rn/n  = 0 a.s. 

Proof of Theorem 1.2: The proof of Theorem 1.1 essentially goes through here. 

The only change is that one notes that since l i m n - ~  R~/n  = 0 a.s. by Lemma 

2.4, it immediately follows that for any 6 > 0, 

lira P(Rn <_ en) = 1. 
n - - ~  o o  

The rest of the proof is identical. I 

3. A general class of  stat ionary processes 

We now introduce a general class of processes, indexed by Z '~, which has some 

resemblance to percolation theory when n _> 2 but also contains all of the T, T -1- 

processes as special cases in which case n = 1 (even though the random walk for 

the T, T-Lprocess  might be d-dimensional). 

Let {Xk}keZn be an arbitrary stationary process. Assume that each realization 

of this process defines for us an equivalence relation on Z n in such a way that  this 

rule is translation invariant. We call this a random equivalence relation. (Two 

examples below will clarify this definition.) Consider the following process. We 

first choose a realization from {Xk}. Then for each equivalence class C, assign 

all the elements of C the same value chosen from {1 , . . . ,  q} (q is an integer 

here) each with probability 1/q. Do this independently for different equivalence 

classes. The process we then consider is {(Xk, Yk)}keZ=, where Yk is that value 

from {1 , . . . ,  q} assigned to k in this two-step procedure. It is straightforward to 

verify that this is a stationary process. 

Examples: (a) Let n = 1 and {Xk}keZ be a stationary process taking values 
s in Z d. For a realization from {Xk}, let, for s > r, s ~ r if ~ i = r + l  Xi = 0. 
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It is immediate that  this is a shift invariant equivalence relation and, moreover, 

a moment of thought shows that the process {(Xk, Yk)}kcZ~ constructed above 

with q -- 2 is precisely the T, T- l -process  associated to {Xk}.  

(b) Let n ~ 1 and {Xk}kEz~ be a stationary process taking values in a finite 

set. Given a realization from {Xk}, let s ~ r if one can find a nearest neighbor 

path in Z n from s to r on which {Xk}  is constant. It is immediate that this 

is a shift invariant equivalence relation; the study of this particular equivalence 

relation is exactly the study of percolation theory. Various aspects of the second 

coordinate of the resulting process {(Xk, Yk)}kez~ for this equivalence relation 

have been studied in [8] (although this equivalence relation point of view was not 

taken there). 

THEOREM 3.1: Let {Xk}k~Zn be an arbitrary stationary process which is a 

Bernoulli shift. Assume that we have a random equivalence relation (defined 

exactly as above) such that a.s. all equivalence classes are finite. Then the cor- 

responding process { (Xk, Yk) }kez,~ is a Bernoulli shift. 

Proof of Theorem 1.3: By example (a), our process is of the type described 

in Theorem 3.1 and, moreover, it is immediate to check that  the transience 

assumption implies (and is implied by) that all equivalence classes are finite. 

The result now follows from Theorem 3.1. | 

Proof of Theorem 3.1: Assume that the {Xk}keZ.  process takes values in the 

set F.  Consider an i.i.d, process {Uk}kez~ which takes values in {1 , . . . ,  q} each 

with probability 1/q. Taking these two processes to be independent, we obtain 

a process {(Xk, Uk)}keZ~ which is a Bernoulli shift since a product of Bernoulli 

shifts is a Bernoulli shift. We now construct an explicit factor map from this 

latter process to the process {(Xk, Yk)}kez n. The conclusion then follows from 

the fact that factors of Bernoulli shifts are Bernoulli shifts (see [15]). 

Given a finite set S C_ Z n, let a(S)  denote the smallest element of S in the 

lexocographic ordering on Z n. Also, given x -- {xk}kez- C F z~ and ~ E Z n, let 

Sx(£) denote the equivalence class o f / u n d e r  the realization x. Consider now the 

factor map 
f :  (F  × {1 , . . . , q} )  zn --~ (F  x {1 , . . . ,q})Z"  

given by 

f((xk, uk)kez-)~ := (x~,u.(s~(~))), 

where x --- {Xk}kcZ n. It is immediate that f maps down to the process 

((Xk, Yk)}k~Z~, as desired. | 
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The general class of processes introduced in this section is worth studying in 
its own right, in particular in investigating the ergodic properties of the process 

{(Xk, Yk)}keZ~ in terms of the given equivalence relation. This might be studied 

in a subsequent paper. 

4. P roo f s  of  T h e o r e m s  1.4, 1.5 a n d  1.6 

We begin by giving the definitions of QWB, QWBE and WB which come from 

[3] and [4] First we need some preliminaries 
Let {Yi)ieI be random variables defined on the same probability space taking 

values in a finite set F where I is countable (possibly finite). As usual, we 

will identify such a family of random variables with a probability measure # on 

F 1 (its distribution). Similarly, for U C_ I, we let #v denote the measure on 

F v induced by the random variables {Yi)icv and identify a stationary process 

{Yi)iezd taking values in the set F with a (shift invariant) probability measure 

# on F zd. We also let #u(.]A) denote ttv conditioned on an event A, I[ [I denote 

the total variation norm of a finite signed measure, B(n)  denote I -n ,  n] d N Z d, 

B(x,  n) denote x + B(n)  and, for x = ( x l , . . . ,  Xd) • Z d, we let Ix I := ~ i  [xi[. 

Definition 4.1: A translation invariant probability measure # on F zd is called 

qu i te  weak  Bernou l l i  ( Q W B )  if for all e > 0, 

Definition 4.2: A translation invariant probability measure # on F zd is called 

qu i t e  weak  Bernou l l i  w i t h  e x p o n e n t i a l  r a t e  ( Q W B E )  if, for all e > 0, 

there exist constants % > 0, c~ > 1 so that 

II~l(Zd\B(n))UB(n(1-e)) --~ttZ~\B(n) × ~lB(n(1-e))ll  <~ C~ e-'Yen 

for all n. 
Extensive discussions concerning the notion of WB in higher dimensions and 

why natural extensions of the 1-dimensional definition turn out to be uninter- 

esting are given in [4]. Moreover, in [4], a definition of WB is proposed which 

is partially motivated by the work of Berbee (see [1]), who gives an equivalent 

definition of WB in 1 dimension in terms of couplings. The definition of WB 

given in [4] is the following; see also [4] for the idea behind this definition and 

the fact that in 1 dimension, this is equivalent to the usual definition. 

Detinition 4.3: A translation invariant probability measure # on F zd is called 

weak  Bernou l l i  (WB) if there exists a nonnegative integer valued stationary 
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process indexed by Z d-l ,  {Cm}mEZd-1 , SO that  for all n there exists a coupling 

(0.1, 0.2, {CI}mEZd_l,...,-1 ~(~2d~,~ ImeZd-11 ~ of 2 copies of the distribution of # and 

2d copies of the distribution of {Cm}meZd-1 (where we suppress the dependence 

on n in the notation) so that  

(1) 0-1 and 0-21B(n)C a r e  independent, and 
(2), ('12dli=l Ai C_ {x: 0-1(x) = 0-2(x)}, where for i . . . .  1,2, ,d 

A ~ = { x e B ( n ) : C * :  < x i + n }  X,  - -  

and for i -- d +  1 , d +  2 , . . . , 2 d  

A~ {x E B(n): -i = C ; , _ .  _< n - xi-~}, 

where }j = {Xl , . . . ,  xj-1, Xj+l,..., xa}. 
For each n, we call the above coupling which depends on n the n t h  coupl ing.  

Proof of Theorem 1.4: Let E,,,~ be the event that  

x6B(n)  c 

and Fn,~ be the event that  

( (LJ n ) 1 e B(x,T~) AB(n--~en)  ¢0.  
xEB - en )  

We claim that for any e > 0, 

(2) lim P(En,~ LJ Fn,~) = O. 
n---%oo 

To see this, we first note that  there is a constant Cd so that for each g >_ 1, 

l{ x: Ixl = i}l -< Cd id-l" Now 

1 
P(En,e) <_ E cdtd-lP(To >- e--n + -~en) < E Cd(e+ n)d-lp(To > e). 

l ~ = n - F 1  1~= [¢n/2-F1] 

Next for / _> 1 + en/2, ~ + n <_ (1 + 2/e) i  and so the above is at most 

c, ld-~P(To >_ t), 
t=r~f+~l 

which approaches 0 as n --+ oc since E[To d] < oo. The exact same argument 

shows that  lin~_~oo P(Fn,e) = 0, yielding (2). 
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Next, it is easy to check that 

#I(Z~\B(.))UB(.(I_c))(-I(En,~ U F,~,e) c) = 

tH(Z~\B(.))('](E.,. U Fn,.) c) x tHB(.O_.))(.J(E.,~ U Fn,.)c), 

and hence it follows that 

I I ~ t i ( Z d \ B ( n ) ) U B ( n ( l _ e ) )  --  ~ttz4\B(n ) x ~tiB(n(l_e) ) I] 

< - U 

u × u 

--tttZ~\B(~) × ttIB(~O-~))ll- 

Now, it is simple to check that  if v is a probability measure and ~,(E) > 1 - 5, 

then ]Iv - u(.IE)] l < 25, and that if max{itvl - /tlil, ]1//2 - tt2I]} ~ (~, then 

Hut x v2 - #z x #2[] _< 25. Combining the above with (2), the result immediately 

follows. I 

Proo[o[ Theorem 1.5: By the proof of Theorem 1.4, it suffices to show that for 

any e > 0, P(E,~,~UF,~,~) <_ cee -~n  for some constants % > 0, ce > 1. To obtain 

such a bound on P(E,~,~), the same computation as in the proof of Theorem 1.4 

shows that it suffices to show that  given positive constants cz and c2, there are 

positive constants c3 and c4 such that  

E c2~d-lp(T° ~ ~) <- c3e-C4n" 
~ C l n  

However, if E[e aT°] < cc for some 5 > 0, then by Markov's inequality, P(To >_ ~) 
decays exponentially in / and the above easily follows. Similarly, one obtains an 

exponential bound for P(F,~,~), completing the proof. I 

Proo[ o[ Theorem 1.6: We first define 2d (possibly different) processes, each 

indexed by Z d-1. These will correspond to the 2d halfspaces H whose boundary, 

defined by OH = {x E H: 3y C H c with I x -  Yt = 1}, contains 0 and is per- 

pendicular to one of the coordinate axes. Given such a halfspace H,  we first let 

{cH}xeOH be defined by 

C H := max{k: B(x + kvH, T~+kv,) M U B(y, Ty) ¢ 0}, 
y E H  

where VH is that  unit vector in Z d pointing away from H. It is left to the reader 

to easily verify (in the same way that  l im, ,_~ P(E,~,¢) = 0 was proved in the 
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proof of Theorem 1.4) that for each halfspace H and each x E OH, C H < oc 
a.s. This yields for us 2d processes, each indexed by Z d-1 since each OH can be 

canonically identified with Z d-1. These processes certainly could be different due 

to, for example, a lack of isotropy. Now, order the 2d halfspaces (H1,...,  H2d) so 

that  their corresponding VH'S a r e  ordered as (el, e2 , . . . ,  ed , - -e l , - -e2 , . . . , - -ed) .  

We now let n > 1. We now construct a coupling 

of 2 copies of the distribution of # and the processes cH1,. . . ,  C H2~ such that  

(1) and (2) in the definition of WB hold. At the end, we mention the small 

modification needed due to the fact that the processes corresponding to different 

C H's might be different processes. 

To construct the coupling, let {X~}iezd and {X~'}iezd be two independent 

copies of the background i.i.d, process {X~}iez~ of which our process {Y~}iczd is 

a finitary factor, the factor map being denoted by f .  The final coupling will be 

defined in terms of only these processes and is as follows. For all i E Z d, let ] i / =  

(f({X~}j~zd)) ~ and for a l l /  ~ B(n), let Y~" = (f({X~'}jezd)) i. Condition (1) 

is now satisfied. Consider the random set G := zd \  ~J~eB(n)c B(x, T~x~). Clearly, 

given {T~l}iEB(n)c (and hence the set G) and {X"}iccc (and h e n c e  {Ut}ieB(n)c), 
the random variables {X~}iea are i.i.d, with the original distribution. We now 

I l l  let {X i }iEZd be defined by X~" = X~' for i ~ G and X~" = X~ for i C G. It 

follows from the above that the process {X~'}iezd has the same distribution as 

We next let, for a l l /  E Z d, Yi" = (f({XY'}jczu))i. (One observes that  this 

agrees with the definition for Yi" given earlier for i ~_ B(n).) It is clear that  both 

the processes {Yi~}~ez u and {Y/~'}iezu are equal in distribution to the process 

For property (2) of the coupling, it is clear that i fx  E G is such that  B(x, T~') C_ 
G, then Y~ = Y~'. Hence if Y~ ¢ Y~', then there exists y e B(n) ~ such that 

B(y, Ty') A B(x, T~") ~ 0 and hence such that  B(y, Ty") N B(x, T~') ¢ 0. Then 

there exists a halfspace Hi whose boundary contains one of the 2d faces of B(n) 
such that  y e Hi. Letting ({C~}mezd-~, . . . ,  {C2md}meZd-l) be the 2d different 

processes defined earlier but with respect to the {X~'}iezd random variables and 

translated to the proper face of B(n), it follows from the above that  (2) also 

holds. 

Finally, we take care of the fact that the p r o c e s s e s  cHI, . . . ,  C H2d might be dif- 
2d ferent. Consider the stationary process {Cm}meZd-~ given by Cm = Ei----1 Cm~,H, 
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where the 2d processes c H ~ , . . . , C  H2d are taken to be independent. I t  is easy 

to modify the above to show that  {Yi}~ez~ is WB with respect to the process 

{Cm}meZ~-l. | 

We end this section with an application to the Ising model. To save space, we 

refer the reader to [2] for all concepts involving the Ising model. 

COROLLARY 4.4: The unique Gibbs state for the Ising model below the critical 

parameter in any dimension is WB. 

Proo~ I t  follows from the proof of the main result in [2] that  this unique Gibbs 

state is a finitary factor of an |.i.d. process with the factor map having finite 

expected coding volume. Hence Theorem 1.6 completes the proof. | 

Remark: I t  was shown in [4] that  the plus state for the Ising model is WB in 

any dimension when the parameter  is sufficiently large. 

5. Further quest ions  

In this final section, we list some questions. 

Question 1: Is the T , T - l - p r o c e s s  associated to simple random walk with 

positive drift in 1 dimension a finitary factor of an |.i.d. process? 

Remark: The proofs of the results in this paper  do not allow us to conclude 

that  this is not the case, since it is easy to show that  (Rn} in this case satisfies 

standard large deviation behavior. Note, in addition, that  the explicit factor map 

given in the proof of Theorem 1.3 is clearly not finitary. 

Question 2: Is it the case that  the T ,T - l -p roce s s  associated to any mean 0 

stat ionary random walk is not a finitary factor of an |.i.d. process? 

Remark: A natural  approach here would be to show that  the nonstandard large 

deviation behavior for the range process in the |.i.d. case also holds in the general 

stat ionary case. 

Question 3: Is the plus state for the Ising model WB for all parameter  values? 

Remark: The results in [2] imply that  this plus state is not a finitary factor 

of an |.i.d. process with finite expected coding volume at or above the critical 

parameter  and hence one cannot use Theorem 1.6 to obtain a positive answer to 

this question. | 
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